تعیین پارامترهای زئومکانیکی توده سنگ میزبان خط جنوبی مترو اصفهان با استفاده از تحلیل برگشته

سعید مهدوی ۲، ابراهیم فتحی سلمی ۲

۱ دانشکده مهندسی صنایع، دانشگاه بهبود معدن
۲ دانشکده مهندسی صنایع، دانشگاه بهبود معدن

(دریافت ۱۰ بهمن ۱۳۸۷، پذیرش ۴ خرداد ۱۳۸۷)

جکیده
در این تحقیق ابتدا پارامترهای زئومکانیکی سنگ‌های سنگ میزبان خط جنوبی مترو اصفهان بررسی شده است. سپس هدف از ابزاری بودن نشانه‌های توده سنگ میزبان در حفره‌های معدنی و برخی از نتایج ابزاری را برای شده است. رویکرد اول ارائه‌شده توسط برکنی و همکارانش آن باید و علاوه بر مغایری هر روش بررسی شده است. در ادامه به نحوه مدل‌سازی عادی ی به صورت سه بعدی اشاره شده است. تحلیل برگشته برای تعیین پارامترهای مورد غیر شکل، جسیمیتی و زاویه استطلاع داخلی سنگ میزبان تولید شده و با پیشگیری از روش هسته‌سازی حداکثر عملکرد و عملکردهای داخلی ساخته شده. زاویه استطلاع داخلی ۲۰ درجه، جسیمیتی ۵۰ ایزو تاس کال و مدل تغییر شکل ۲۵ گیگابایتی معادل تعیین شده است. با استفاده از روش‌های هسته‌سازی حداکثر عملکرد و کمینه کردن بیشینه حداکثر زاویه استطلاع داخلی ۲۴ درجه. جسیمیتی ۲۵ گیگابایتی و مدل تغییر شکل ۵ گیگابایتی معادل تعیین شده است. کمترین حساسیت زاویه حداکثر حداقل زاویه استطلاع داخلی و بیشترین حساسیت آن به مدل تغییر شکل و جسیمیتی است. علاوه بر حساسیت به زاویه استطلاع داخلی می‌تواند ناشی از کم بودن روابط توپولوژیک باشد.

کلمات کلیدی
FLAC ۳D
فظاره زئومکانیکی، تحلیل برگشتنی، کنیدمی‌سنج

یریش تمیزی و بهبودی معدنی
Iranian Journal of Mining Engineering (IRJME)
آرزوی شروع و نهایت همکاری با اطلاعات مربوط به این مقاله در جای‌جای روسیه و کشورهای مختلف دنیا، به عنوان یکی از مسائل آسیب‌پذیری‌ها، نقش نماینده در موجودات زنده و مدیران و صنف‌های مختلف است که متعامد با نیازهای اقتصادی و اجتماعی است. در این راستا، این مقاله به عنوان یکی از مهم‌ترین موارد که در آکادمیک و سیاسی مطرح می‌شود، به طور مستقیم می‌تواند به صورت یک راهکار سازنده و کاربردی کاهش این اغتشاشات و جنایات و تجاوزات را در این منطقه انجام دهد.

شکل 2: هندسه نبات در قطعه جویی متوسط اصفهان[1]

نتیجه‌گیری‌های زونومکانیکی نوده سیستم زیرساخت بر اساس نتایج حاصل از گام‌های حفاظت ناشی از کاهش سطح شیپر به دو جهت انجام می‌شود که با توجه به معیار تحلیل ارائه شده توسط تئوری و همکاران[3] به سبب زیست‌محیطی نشان‌گذاری شده است. به‌طور کلی، بررسی‌های میدانی تا حدود زیادی نشان می‌دهد که سیستم‌های زیرساختی ناشی از طبیعت در زمینه حفاظت و کاهش آلودگی محیط به‌طور کلی مؤثر و کاربردی هستند. این نتایج باعث می‌شود تا هدفمندی‌های مختلفی برای استفاده از سیستم‌های زیرساختی در منابع طبیعی و محیط زیست ثبت شوند.

شکل 3: شبکه درون شهری طبیعی اصفهان[1]

در اینجا بحث پایداری زونومکانیکی نوده سیستم زیرساخت که به عنوان یکی از مهم‌ترین موارد جامعه در این منطقه به‌طور مستقیم با آشنایی با هرکدام از این تکنیک‌ها نشان می‌دهد، به‌طور کلی مؤثر و کاربردی هستند. این نتایج باعث می‌شود تا هدفمندی‌های مختلفی برای استفاده از سیستم‌های زیرساختی در منابع طبیعی و محیط زیست ثبت شوند.
 tabel 1-بارامترهای زولومیکاسیکی نوده سبزین بزرگ تولن

<table>
<thead>
<tr>
<th>φ</th>
<th>C (kpa)</th>
<th>E_m (Gpa)</th>
<th>GS1</th>
<th>Q</th>
<th>RMR</th>
</tr>
</thead>
<tbody>
<tr>
<td>45</td>
<td>284</td>
<td>72</td>
<td>37</td>
<td>77</td>
<td></td>
</tr>
<tr>
<td>62</td>
<td>175</td>
<td>26</td>
<td>32</td>
<td>75</td>
<td></td>
</tr>
<tr>
<td>26</td>
<td>120</td>
<td>18</td>
<td>31</td>
<td>74</td>
<td></td>
</tr>
<tr>
<td>50</td>
<td>97</td>
<td>12.4</td>
<td>31</td>
<td>74</td>
<td></td>
</tr>
<tr>
<td>40</td>
<td>73</td>
<td>14</td>
<td>30</td>
<td>73</td>
<td></td>
</tr>
<tr>
<td>32</td>
<td>52</td>
<td>15.4</td>
<td>29</td>
<td>72</td>
<td></td>
</tr>
<tr>
<td>22</td>
<td>37</td>
<td>14</td>
<td>30</td>
<td>73</td>
<td></td>
</tr>
<tr>
<td>18</td>
<td>24</td>
<td>14</td>
<td>31</td>
<td>74</td>
<td></td>
</tr>
<tr>
<td>12</td>
<td>18</td>
<td>16</td>
<td>32</td>
<td>75</td>
<td></td>
</tr>
</tbody>
</table>

- ایزومترنی گشنب

- 1.2-هده از ایزریترنی

بارامترهای زولومیکاسیکی نوده سبزین که برای طراحی سازه‌های زیرزمینی کار می‌رود معمولاً به طور غیر مستقیم استفاده از یکی از این پارامترهای زولومیکاسیکی سک و بکر و صندوق‌های محسوس می‌باشد. به طور مستقیم توصیف از این پارامترها برای کار گزارش می‌شود. در طور جلوگیری از این پارامترها، می‌توان بدون اجرای آزمایشات زیرزمینی از یک هدایت است. این امر دو علت دارد:

1. این اینکه استحکامات و ضخامت این نوع سک و بکر و صندوق‌های مواد ساختمانی است. به طور مستقیم توضع از این پارامترها برای کار گزارش می‌شود. این امر دو علت دارد:

2. این اینکه استحکامات و ضخامت این نوع سک و بکر و صندوق‌های مواد ساختمانی است. به طور مستقیم توضع از این پارامترها برای کار گزارش می‌شود. این امر دو علت دارد:

- ایزومترنی گشنب

- 1.2-هده از ایزریترنی

بارامترهای زولومیکاسیکی نوده سبزین که برای طراحی سازه‌های زیرزمینی کار می‌رود معمولاً به طور غیر مستقیم استفاده از یکی از این پارامترهای زولومیکاسیکی سک و بکر و صندوق‌های محسوس می‌باشد. به طور مستقیم توضع از این پارامترها برای کار گزارش می‌شود. در طور جلوگیری از این پارامترها، می‌توان بدون اجرای آزمایشات زیرزمینی از یک هدایت است. این امر دو علت دارد:

1. این اینکه استحکامات و ضخامت این نوع سک و بکر و صندوق‌های مواد ساختمانی است. به طور مستقیم توضع از این پارامترها برای کار گزارش می‌شود. این امر دو علت دارد:

2. این اینکه استحکامات و ضخامت این نوع سک و بکر و صندوق‌های مواد ساختمانی است. به طور مستقیم توضع از این پارامترها برای کار گزارش می‌شود. این امر دو علت دارد:

- ایزومترنی گشنب

- 1.2-هده از ایزریترنی

بارامترهای زولومیکاسیکی نوده سبزین که برای طراحی سازه‌های زیرزمینی کار می‌رود معمولاً به طور غیر مستقیم استفاده از یکی از این پارامترهای زولومیکاسیکی سک و بکر و صندوق‌های محسوس می‌باشد. به طور مستقیم توضع از این پارامترها برای کار گزارش می‌شود. در طور جلوگیری از این پارامترها، می‌توان بدون اجرای آزمایشات زیرزمینی از یک هدایت است. این امر دو علت دارد:

1. این اینکه استحکامات و ضخامت این نوع سک و بکر و صندوق‌های مواد ساختمانی است. به طور مستقیم توضع از این پارامترها برای کار گزارش می‌شود. این امر دو علت دارد:

2. این اینکه استحکامات و ضخامت این نوع سک و بکر و صندوق‌های مواد ساختمانی است. به طور مستقیم توضع از این پارامترها برای کار گزارش می‌شود. این امر دو علت دارد:

- ایزومترنی گشنب

- 1.2-هده از ایزریترنی

بارامترهای زولومیکاسیکی نوده سبزین که برای طراحی سازه‌های زیرزمینی کار می‌رود معمولاً به طور غیر مستقیم استفاده از یکی از این پارامترهای زولومیکاسیکی سک و بکر و صندوق‌های محسوس می‌باشد. به طور مستقیم توضع از این پارامترها برای کار گزارش می‌شود. در طور جلوگیری از این پارامترها، می‌توان بدون اجرای آزمایشات زیرزمینی از یک هدایت است. این امر دو علت دارد:

1. این اینکه استحکامات و ضخامت این نوع سک و بکر و صندوق‌های مواد ساختمانی است. به طور مستقیم توضع از این پارامترها برای کار گزارش می‌شود. این امر دو علت دارد:

2. این اینکه استحکامات و ضخامت این نوع سک و بکر و صندوق‌های مواد ساختمانی است. به طور مستقیم توضع از این پارامترها برای کار گزارش می‌شود. این امر دو علت دارد:

- ایزومترنی گشنب

- 1.2-هده از ایزریترنی

بارامترهای زولومیکاسیکی نوده سبزین که برای طراحی سازه‌های زیرزمینی کار می‌رود معمولاً به طور غیر مستقیم استفاده از یکی از این پارامترهای زولومیکاسیکی سک و بکر و صندوق‌های محسوس می‌باشد. به طور مستقیم توضع از این پارامترها برای کار گزارش می‌شود. در طور جلوگیری از این پارامترها، می‌توان بدون اجرای آزمایشات زیرزمینی از یک هدایت است. این امر دو علت دارد:

1. این اینکه استحکامات و ضخامت این نوع سک و بکر و صندوق‌های مواد ساختمانی است. به طور مستقیم توضع از این پارامترها برای کار گزارش می‌شود. این امر دو علت دارد:

2. این اینکه استحکامات و ضخامت این نوع سک و بکر و صندوق‌های مواد ساختمانی است. به طور مستقیم توضع از این پارامترها برای کار گزارش می‌شود. این امر دو علت دارد:
مجرد فراز داد و اختلاف در نتایج واقعی و پیشین، شده سازه مورد نظر را به حالت رسیدن بی طور کلی روش‌های تحلیل برگشته را می‌توان به دو دسته مستقیم و مکوس تقسیم کرد.

در روش مکوس، روش‌های تحلیل عادی است. در این روش نتایج مقدار از اندازه‌گیری شده با آنچه از مقدار میان‌واوئه تا پایان از تکنیک‌های بهبود‌یافته استفاده کرد. این روش در این دیداری به عنوان تکنیک‌های تکراری و کم‌بودن زمان محاسبات است و مرسوم عمده این روش است که در مسائل مهندسی زمین‌شناسی به دست‌آورده به‌طور کلی که کمتری از نتایج عادی پایدار باشد مشکل است.

در روش مستقیم الکس استفاده از سه اندیس استفاده محاسبات به‌طور مکانیک کاهش پایه و شیب‌های مورد نظر از اندازه‌گیری شده و محاسبه شده به دست‌آورده ممکن است از مقدار انداره‌گیری شده باشد. این روش در این روش مکوس، با مسیرسازی و تغییر نقاط شروع و پایان متوسط و روش‌های تحلیل برگشته است.

در حال حاضر به‌طور وسیع در روش‌های عادی برای طراحی سازه‌های زیرزمینی نظیر تونل، معاون، فن‌نظام و سیستم‌ها و نظایر آن استفاده می‌شود، ولی اینhv ارتباط به دقت اطلاعات ورودی و این ابزار جدی برای پیش‌بینی و تحلیل نقشه بندی دارد. باید یاد داشته شود که این روش‌های تحلیل برگشته برای مقایسه و مقایسه زمین‌شناسی و فناوری‌های پیشرفته از بررسی زمین‌شناسی دقیق تحلیلی عادی پیش‌بینی، رفتار واقعی سازه‌های مکس‌ورد، منفعت‌های را برآورند و تحلیل برگشته می‌تواند داده‌های از روش‌های کلی روش‌های مکاسی و پیام‌های زمین‌شناسی و پارامترهای زمین‌شناسی ورود را مورد بررسی قرار دهد.

جدول ۲- مشخصات کشیدگی سیستمی شده در تونل غرب عاج حساب سنگ‌سر الهام[۱]

<table>
<thead>
<tr>
<th>کشتی کشیدگی (کیلو متر)</th>
<th>فاصله از جیهه در حسب متر</th>
<th>طول راه‌های بر حسب متر</th>
<th>مساحت کشیدگی سنگ (کیلو متر)</th>
<th>مساحت کشیدگی سنگ (کیلو متر)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>9.024</td>
<td>3</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>2</td>
<td>9.040</td>
<td>3</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>3</td>
<td>9.062</td>
<td>3</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>4</td>
<td>9.080</td>
<td>3</td>
<td>3</td>
<td>3</td>
</tr>
</tbody>
</table>

شکل ۲- جهه‌های نتیجه‌گیری شده توسط کشیدگی سیستمی شده در تونل غرب عاج حساب سنگ‌سر الهام[۱]
کلمه‌های بهمنی‌ها این استفاده‌ها است. اگر فرض کنیم جابجایی قرارند، شده به تغییر می‌گردد برای

\[f = \sum_{i=1}^{n} (u_i - u_i')^2 \]

\[a_i = \left| \frac{u_i - u_i'}{u_i'} \right| \]

که در آن

\[f_i' \] و برای جابجایی‌های انداره‌گیری شده توسط شناسایی شده است. اگر و محاسبه‌شده توسط سیستم در نقطه‌ای باید تا که با دادن مقدار

\[a_i \]

\[\beta \]

\[b \]

\[c \]

\[d \]

\[e \]

\[f \]

\[g \]

\[h \]

\[i \]

\[j \]

\[k \]

\[l \]

\[m \]

\[n \]

\[o \]

\[p \]

\[q \]

\[r \]

\[s \]

\[t \]

\[u \]

\[v \]

\[w \]

\[x \]

\[y \]

\[z \]
سطح ابستو در عمق سه متری از سطح زمین واقع شده است. نشان‌های بردار قائم برای با نشان‌های متقابل و نسبت نشان‌های قائم با توجه به حفره‌ای تولید در اینجا است. جوان سطحی برای با 3/80 لحاظ شده است.

شکل 4- حفازی گفتن و تکمیل تکه‌دار مشتاق

- نتایج حاصل از تحلیل برگشته

هدف از انجام تحلیل برگشته‌ی تخمین با استفاده از دولت مجهز، جابجایی و راپری اصطکاک داخلی نوده سیستم میزان نیرویی که می‌تواند افت‌العمل جابجایی‌هایی را نشان دهد، توسط کتابخانه میزان‌های محاسبه شده توسط مدل‌های عددی است بایستی از طریق مدل‌های عددی مکرون با

![Diagram with labels and data points](image-url)
همانگونه که مشاهده می‌شود نتایج درصد اختلاف و مقادیر متوسط و بیشترین آن در روش حداکثر یکبار در کمتر از گزارش گذشته بوده است.

۷- تریبه‌گیری
با استفاده از روش بهینه‌سازی حداکثر یکبار در کمتر از گزارش گذشته بوده است.

۸- تغییرات نتایج حداکثر یکبار در گزارش گذشته

جدول ۳ مقایسه نتایج مالیاتی دوم تحلیل برگشتی با اثربخشی وارد-ضربه

<table>
<thead>
<tr>
<th>(Kpa)</th>
<th>(Degree)</th>
<th>(Gpa)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.01</td>
<td>0.02</td>
<td>0.03</td>
</tr>
</tbody>
</table>

شکل ۸ مقایسه نتایج حداکثر یکبار در گزارش گذشته
شکل 9. مقدار نابع خطا مرحله دوم در مقایسه مدول تغییر شکل برای چسپندگی ۲۰۰ کیلوپاسکال

شکل 10. مقدار نابع خطا مرحله دوم در مقایسه مدول تغییر شکل برای چسپندگی ۲۵۰ کیلوپاسکال

1- Cut and Cover
2- Tunneling
3- Fissured Rock
4- Extensometer
5- Inclinometer
6- Convergence Meter
7- Pressure Cell
8- Anchor Load Cell
9- Chebyshev
10- Minimax
11- Least Square
12- Lattice Girder
13- Step
14- History

A new displacement back analysis to identify mechanical geo-mechanical parameters based on hybrid intelligent methodology.